ARIC Surveillance Variable Dictionary

Frozen CHD

Events

Event: An event consists of a single eligible occurrence or group of eligible occurrences that are linked based on the 28 day criteria and belonging to the same individual. All Occurrence(s) that makes an event will have the same EVENT_ID.
ARIC Surveillance Variable Dictionary – Frozen CHD Events File

Table of Contents

Alphabetical Index .. iv

1. Classification Variables
 WARICDX (Worst ARICDX2 – comm surv) .. 1
 ALTDX2 (Computerized Downgraded MI Diagnosis for events - comm surv) 2
 MIDX (Final MI Diagnosis – comm surv) ... 3
 FATALDX (Final Fatal Diagnosis – comm surv) .. 4
 WCARICDX (Worst CARCDXX2 – cohort surv) ... 5
 CALTDX2 (Computerized Downgraded MI Diagnosis for events - cohort surv) 6
 CMIDX (Final MI Diagnosis – cohort surv) .. 7
 CFATALDX (Final Fatal Diagnosis – cohort surv) .. 8

2. Demographic Variables
 DOB1 (Date of Birth) ... 9
 RACE1 (Race) .. 10
 GENDER1 (Sex) ... 11

3. Identification Variables
 EVENT_ID (Event ID – comm surv) .. 12
 CHRT_ID (Cohort Participant ID) ... 13

4. Sampling Variable
 SAMWT (Sampling Weight) ... 14

5. Event type/date Variables
 DTHDATE (Death Date) .. 15
 EVTDAT3 (CHD Event Date – comm surv) ... 16
 ESFDATE (Earliest Date for an Event – comm surv) ... 17
 MIDATE (MI Date) .. 18
 CESFDATE (Earliest Date for an Event – cohort surv) .. 19
 CEVTDAT3 (CHD Event Date – cohort surv) ... 20
 CMIDATE (MI Date – cohort surv) ... 21
6. Sudden Cardiac Death Variables
 SUDTH1 (Sudden Death within 1 hr) ...22
 SUDTH24 (Sudden Death within 24 hr) ..23

7. History Variable
 PRVRNK1 (History of CHD) ..24
Alphabetical Index

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTDX2</td>
<td>Computerized Downgraded MI Diagnosis for events - comm surv</td>
<td>2</td>
</tr>
<tr>
<td>CALTX2</td>
<td>Computerized Downgraded MI Diagnosis for events - cohort surv</td>
<td>6</td>
</tr>
<tr>
<td>CESFDATF</td>
<td>Earliest Date for an Event – cohort surv</td>
<td>19</td>
</tr>
<tr>
<td>CEVTDATF</td>
<td>CHD Event Date – cohort surv</td>
<td>20</td>
</tr>
<tr>
<td>CFATALDX</td>
<td>Final Fatal Diagnosis – cohort surv</td>
<td>8</td>
</tr>
<tr>
<td>CHRT_ID</td>
<td>Cohort Participant ID</td>
<td>13</td>
</tr>
<tr>
<td>CMIDATE</td>
<td>MI Date – cohort surv</td>
<td>21</td>
</tr>
<tr>
<td>CMIDX</td>
<td>Final MI Diagnosis – cohort surv</td>
<td>7</td>
</tr>
<tr>
<td>DOB1</td>
<td>Date of Birth</td>
<td>9</td>
</tr>
<tr>
<td>DTHDATE</td>
<td>Death Date</td>
<td>15</td>
</tr>
<tr>
<td>ESFDATF</td>
<td>Earliest Date for an Event – comm surv</td>
<td>17</td>
</tr>
<tr>
<td>EVENT_ID</td>
<td>Event ID – comm surv</td>
<td>12</td>
</tr>
<tr>
<td>EVTDATF</td>
<td>CHD Event Date – comm surv</td>
<td>16</td>
</tr>
<tr>
<td>FATALDX</td>
<td>Final Fatal Diagnosis – comm surv</td>
<td>4</td>
</tr>
<tr>
<td>GENDER1</td>
<td>Sex</td>
<td>11</td>
</tr>
<tr>
<td>MIDATE</td>
<td>MI Date</td>
<td>18</td>
</tr>
<tr>
<td>MIDX</td>
<td>Final MI Diagnosis – comm surv</td>
<td>3</td>
</tr>
<tr>
<td>PRVRNK1</td>
<td>History of CHD</td>
<td>24</td>
</tr>
<tr>
<td>RACE1</td>
<td>Race</td>
<td>10</td>
</tr>
<tr>
<td>SAMWT</td>
<td>Sampling Weight</td>
<td>14</td>
</tr>
<tr>
<td>SUDTH1</td>
<td>Sudden Death within 1 hr</td>
<td>22</td>
</tr>
<tr>
<td>SUDTH24</td>
<td>Sudden Death within 24 hr</td>
<td>23</td>
</tr>
<tr>
<td>WARICDX</td>
<td>Worst ARICDX2 – comm surv</td>
<td>1</td>
</tr>
<tr>
<td>WCARICDX</td>
<td>Worst CARCDXX2 – cohort surv</td>
<td>5</td>
</tr>
</tbody>
</table>
WARICDX

Purpose
To determine the worst computer MI diagnosis for hospitalized events in community surveillance.

Values
'1' '2' '3' '4' '5' or ' ' (missing)

Description
WARICDX is a character variable determined by the largest value of ARICDX2 within an event. For out-of-hospital deaths (linked or unlinked), WARICDX is missing. For example, if an event consists of 3 hospitalizations, and the computerized MI diagnosis (ARICDX2) for each hospitalization has value 1, 3 and 5, then WARICDX = 5.

Type
Event

Algorithm

<table>
<thead>
<tr>
<th>WARICDX</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'5'</td>
<td>Definite MI</td>
</tr>
<tr>
<td>'4'</td>
<td>Probable MI</td>
</tr>
<tr>
<td>'3'</td>
<td>Suspect MI</td>
</tr>
<tr>
<td>'2'</td>
<td>No MI</td>
</tr>
<tr>
<td>'1'</td>
<td>No MI</td>
</tr>
<tr>
<td>' '</td>
<td>Out-of-hospital deaths or ARICDX2=missing across all occurrences within an event</td>
</tr>
</tbody>
</table>

Related Variables
ARICDX2
ALTDX2

Purpose
To determine the computerized MI diagnosis for hospitalized events in community surveillance.

Values
'1' '2' '3' '4' '5' or '' (missing)

Description
ALTDX2 is a character variable determined by the worst pain (downgraded result), worst enzyme (downgraded result) and the worst ECG diagnosis within an event. ALTDX2 is the final computer MI classification for an event in community surveillance.

Type
Event

Algorithm

<table>
<thead>
<tr>
<th>ALTDX2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'5'</td>
<td>Definite MI</td>
</tr>
<tr>
<td>'4'</td>
<td>Probable MI</td>
</tr>
<tr>
<td>'3'</td>
<td>Suspect MI</td>
</tr>
<tr>
<td>'2'</td>
<td>No MI</td>
</tr>
<tr>
<td>'1'</td>
<td>No MI</td>
</tr>
</tbody>
</table>

Related Variables
PAINDX2, ENZDX2, ECGDX
MIDX

Purpose
To determine a MI diagnosis for hospitalized events in Community Surveillance.

Values
Character

Description
MIDX is the final MI diagnosis determined by MMCC reviews or computer algorithm if MMCC reviews are not required.

Type
Event

Remarks
Unlinked out-of-hospital deaths have MIDX='NO-HOSP' (no hospitalizations)

Algorithm

<table>
<thead>
<tr>
<th>MIDX</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFMI</td>
<td>Definite MI</td>
</tr>
<tr>
<td>PROBMI</td>
<td>Probable MI</td>
</tr>
<tr>
<td>SUSPMI</td>
<td>Suspect MI</td>
</tr>
<tr>
<td>NO-MI</td>
<td>No MI</td>
</tr>
<tr>
<td>NO-HOSP</td>
<td>No hospitalizations (for all unlinked OHD)</td>
</tr>
<tr>
<td>UNCLASS</td>
<td>Missing pain, ECG and/or enzyme diagnosis</td>
</tr>
</tbody>
</table>

Related Variables
ARICDX, ARICDX2, CMIDX, CFATALDX, FATALDX, ALTDX2
FATALDX

Purpose
To determine a CHD diagnosis for fatal events in Community Surveillance.

Values
Character

Description
FATALDX is the final CHD classification variable for fatal events, which is determined by MMCC reviews or computer algorithm if MMCC reviews are not required.

Type
Event

Remarks
Non-fatal hospitalizations (for all occurrences within an event) have FATALDX='NONFAT'.

Algorithm

<table>
<thead>
<tr>
<th>FATALDX</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFFATCHD</td>
<td>Definite fatal CHD</td>
</tr>
<tr>
<td>DEFFATMI</td>
<td>Definite fatal MI</td>
</tr>
<tr>
<td>POSSFATCHD</td>
<td>Possible fatal CHD</td>
</tr>
<tr>
<td>NONCHDDTH</td>
<td>Non-CHD death</td>
</tr>
<tr>
<td>NONFAT</td>
<td>Non fatal hospitalizations</td>
</tr>
<tr>
<td>UNCLASS</td>
<td>Unclassifiable</td>
</tr>
<tr>
<td>UNCLASSIFIABLE</td>
<td>Unclassifiable</td>
</tr>
</tbody>
</table>

Related Variables
CMIDX, CFATALDX, MIDX
WCARICDX

Purpose
To determine the worst computer MI Diagnosis for hospitalized events among cohort participants.

Values
'1' '2' '3' '4' '5' or '' (missing)

Description
WCARICDX is a character variable determined by the largest value of CARCDXX2 within a cohort event. For out-of-hospital deaths (linked or unlinked), WCARICDX is missing. For example, if an event consists of 3 hospitalizations, and the computerized MI diagnosis (CARCDXX2) for each hospitalization has value 1, 3 and 5, then WCARICDX = 5.

Type
Event

Remarks
WCARICDX (for cohort surveillance) is an analogy to WARICDX (for community surveillance).

Algorithm

<table>
<thead>
<tr>
<th>WCARICDX</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'5'</td>
<td>Definite MI</td>
</tr>
<tr>
<td>'4'</td>
<td>Probable MI</td>
</tr>
<tr>
<td>'3'</td>
<td>Suspect MI</td>
</tr>
<tr>
<td>'2'</td>
<td>No MI</td>
</tr>
<tr>
<td>'1'</td>
<td>No MI</td>
</tr>
<tr>
<td>''</td>
<td>Out-of-hospital deaths or CARCDXX2=missing across all occurrences within an event</td>
</tr>
</tbody>
</table>

Related Variables
CARCDXX2
CALTDX2

Purpose
To determine the computerized MI diagnosis for hospitalized events in cohort surveillance.

Values
'1' '2' '3' '4' '5' or '' (missing)

Description
CALTDX2 is a character variable determined by the worst pain (CPAINDX2), worst enzyme (CENZDX2) and the worst ECG diagnosis (CECGDXX) within an event. CALTDX2 is the final computer MI classification for an event in cohort surveillance.

Type
Event

Algorithm

<table>
<thead>
<tr>
<th>CALTDX2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'5'</td>
<td>Definite MI</td>
</tr>
<tr>
<td>'4'</td>
<td>Probable MI</td>
</tr>
<tr>
<td>'3'</td>
<td>Suspect MI</td>
</tr>
<tr>
<td>'2'</td>
<td>No MI</td>
</tr>
<tr>
<td>'1'</td>
<td>No MI</td>
</tr>
</tbody>
</table>

Related Variables
CPAINDX2, CENZDX2, CECGDXX
CMIDX

Purpose
To determine a MI Diagnosis for hospitalized events among cohort participants.

Values
Character

Description
CMIDX is the final MI classification variable determined by MMCC reviews or computer algorithm if MMCC reviews are not required.

Type
Event

Remarks
Unlinked out-of-hospital deaths have CMIDX='NO-HOSP' (no hospitalizations)

Algorithm

<table>
<thead>
<tr>
<th>CMIDX</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFMI</td>
<td>Definite MI</td>
</tr>
<tr>
<td>PROBMI</td>
<td>Probable MI</td>
</tr>
<tr>
<td>SUSPMI</td>
<td>Suspect MI</td>
</tr>
<tr>
<td>NO-MI</td>
<td>No MI</td>
</tr>
<tr>
<td>NO-HOSP</td>
<td>No hospitalizations (for all unlinked OHD)</td>
</tr>
<tr>
<td>UNCLASS</td>
<td>missing pain, ECG and/or enzyme diagnosis</td>
</tr>
</tbody>
</table>

Related Variables
CARCDX, CARCDXX2, CMIDX, CFATALDX
CFATALDX

Purpose
To determine a CHD diagnosis for fatal events among cohort participants.

Values
Character

Description
CFATALDX is the final CHD classification variable for fatal events determined by MMCC reviews or computer algorithm if MMCC reviews are not required.

Type
Event

Remarks
Non-fatal hospitalizations (EVTYPE01='N' for all occurrences within an event) have CFATALDX='NONFAT'.

Algorithm

<table>
<thead>
<tr>
<th>CFATALDX</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFFATCHD</td>
<td>Definite fatal CHD</td>
</tr>
<tr>
<td>DEFFATMI</td>
<td>Definite fatal MI</td>
</tr>
<tr>
<td>POSSFATCHD</td>
<td>Possible fatal CHD</td>
</tr>
<tr>
<td>NONCHDDTH</td>
<td>Non-CHD death</td>
</tr>
<tr>
<td>NONFAT</td>
<td>Non fatal hospitalizations</td>
</tr>
<tr>
<td>UNCLASS</td>
<td>Unclassifiable</td>
</tr>
<tr>
<td>UNCLASSIFIABLE</td>
<td>Unclassifiable</td>
</tr>
</tbody>
</table>

Related Variables
CMIDX, EVTYPE01
DOB1

Purpose
To determine the date of birth for events in Community Surveillance.

Values
Date in mm/dd/yy format

Type
Event

Description
DOB1 is the date of birth from the most recent occurrence.

Remarks
DOB1 is derived for community surveillance only. For cohort surveillance participants, variable BIRTHDAT in the Cohort derived file (DERIVE0x) can be used to identify date of birth.

Algorithm
DOB1 takes the value of BIRTHDAY* that occurred most recently within an event.

* BIRTHDAY takes one of the following non-missing date of birth values in the listing order: DHTA08, HRAA10, IDNA11 (for cohort participants only). If all of the dates listed above are missing, BIRTHDAY is missing.
RACE1

Purpose
To determine the race group for each person in community surveillance.

Values
Character

Type
Event

Remarks
RACE1 is derived for community surveillance only. For cohort surveillance participants, variable RACEGRP in the Cohort derived file can be used to identify race.

Algorithm
RACE1 takes the value of RACE* that occurred most frequently within an event. If the maximum counts are equal for two or more race groups, RACE1 is the most recent RACE.

RACE1 Description

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>White/Caucasian</td>
</tr>
<tr>
<td>B</td>
<td>Black/Negro</td>
</tr>
<tr>
<td>A</td>
<td>Asian/Pacific Islander</td>
</tr>
<tr>
<td>I</td>
<td>American Indian/Native Alaskan</td>
</tr>
<tr>
<td>O</td>
<td>Other</td>
</tr>
<tr>
<td>U</td>
<td>Unknown/Not Recorded</td>
</tr>
<tr>
<td>.</td>
<td>Missing</td>
</tr>
</tbody>
</table>

* RACE takes one of the following non-missing race values in the listing order: FTRA23 (for cohorts only), DTHA05, HRAA09. If race is missing from all forms listed above, RACE takes a missing value.
GENDER1

Purpose
To determine the gender for each event in community surveillance.

Values
'M' 'F' or . (missing)

Type
Event

Description
GENDER1 is derived for inconsistent gender information across all forms within an event.

Remarks
GENDER1 is derived for community surveillance only. For cohort surveillance participants, variable GENDER in the Cohort derived file can be used to identify gender.

Algorithm
GENDER1 takes the non-missing value of SEX* that occurred most frequently within an event. When male and female counts are equal, GENDER1 takes the value of the most current non-missing SEX.

* SEX is determined for each ID by the non-missing value of the listing order: FTRA22, DTHA04, HRAA04
EVENT_ID

Purpose
To determine an event ID for Community Surveillance.

Values
7-digit, e.g. 1568265

Type
Event

Description
EVENT_ID is the ID from the most recent occurrence within an event. EVENT_ID is the same for all occurrences within an event. If an event contains only one ID, then EVENT_ID=ID.

Remarks
EVENT_ID (for community surveillance) is an analogy to C_EVTID (for cohort surveillance).

Related Variables
LINK, C_EVTID
CHRT_ID

Purpose
To map a surveillance ID to the Cohort participant ID.

Values
Character

Description
CHRT_ID is the cohort participant ID from CELB02. CHRT_ID is the same for all occurrences within a person, and is missing for occurrences not from cohort participants.

Type
Occurrence

Related variables
EVT_ID2, C_EVTID, ID
SAMWT

Purpose
To determine sampling weight for an event.

Values
Numeric

Type
Event

Remarks
SAMWT is a numeric variable determined by the values of the derived variable SAMP and the number of links for an event. For non-missing SAMWT, it takes values greater than or equal to 1. If any occurrence within an event has SAMWT=1, then SAMWT=1 for that event.

Algorithm
SAMWT is the inverse of the linked sampling probability of an event. The linked sampling probability of an event with \(i \) occurrences, say \(\alpha_i \) (\(i=1, 2,..,I \)), is a recursive sum of \(\alpha_{i-1} \) which is defined as follows.

Let \(P_i \) denote the sampling probability of the \(i \)th linked occurrence (defined by SAMP), \(\alpha_i \) denote the linked sampling probability for an event with \(i \) occurrences. Define \(\alpha_0=0 \). Then

\[
\alpha_i = \alpha_{i-1} + (1-\alpha_{i-1})P_i \quad \text{for } i=1, 2,\ldots, I
\]

Following table shows the linked sampling probabilities (\(\alpha_i \)) for events with 1 to 3 occurrences.

<table>
<thead>
<tr>
<th># of linked Occurrences</th>
<th>Linked Sampling Probability for an Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0+(1-0)\times P_1)</td>
</tr>
<tr>
<td>2</td>
<td>(P_1 + (1-P_1)\times P_2)</td>
</tr>
<tr>
<td>3</td>
<td>([P_1 + (1-P_1)\times P_2] + [1-(P_1 + P_2 - P_1)\times P_3])</td>
</tr>
</tbody>
</table>

Related Variables
SAMP
DTHDATE

Purpose
To determine a death date for fatal occurrences.

Values
A date in mm/dd/yy format, .N if person is not deceased, .U unknown

Type
Occurrence

Description
DTHDATE will assume one of the following dates: DTH09, HRAA14, CELB04, or DDATE as indicated on the table below if the person is deceased. DTH09 records the date of death from the death Certificate, HRAA14 records the date of discharge or death from the hospital medical record, CELB04 records the date of death or discharge looking at a series of forms, and CELB06 asks if it is a death. Non-fatal occurrences have DTHDATE = .N. If EVTYPE01 cannot be determined, DTHDATE=.U.

Remarks
DTHDATE may contain non-validated death dates obtained from information other than the death certificates. To use only validated death date, DTH09 is the variable to use.

Algorithm

<table>
<thead>
<tr>
<th>DTHDATE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTH09</td>
<td>If (EVTYPE01='I' or 'O') and DTH09 is non-missing</td>
</tr>
<tr>
<td>HRAA14</td>
<td>If (EVTYPE01='I' or 'O') and DTH09 is missing and (HRAA17=D and HRAA14 is not missing)</td>
</tr>
<tr>
<td>CELB04</td>
<td>IF (EVTYPE01='I' or 'O') and DTH09 and HRAA14 are both missing and CELB04 is not missing and CELB06 = 'Y'</td>
</tr>
<tr>
<td>DDATE</td>
<td>If (EVTYPE01='I' or 'O') and (DTH09, HRAA14, and CELB04 are all missing)</td>
</tr>
<tr>
<td>.N</td>
<td>If EVTYPE01 = 'N' (Non-Fatal occurrence)</td>
</tr>
<tr>
<td>.U</td>
<td>Otherwise</td>
</tr>
</tbody>
</table>

Related Variables
EVTYPE01, DDATE
EVTDAT3

Purpose
To determine an event date (fatal or nonfatal) for events identified by community surveillance.

Values
A date in mm/dd/yy format

Type
Event

Description
EVTDAT3 is the event date determined by MIDATE for definite or probable MI, by DTH09 for definite fatal CHD (but not definite/probable MI), and by DDATE otherwise.

Remarks
EVTDAT3 (for community surveillance) is an analogy to CEVTDAT3 (for cohort surveillance).

Algorithm

<table>
<thead>
<tr>
<th>EVTDAT3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDATE</td>
<td>If MIDX='DEFMI' or 'PROBMI'</td>
</tr>
<tr>
<td>DTH09</td>
<td>If (FATALDX='DEFFATCHD' or 'DEFFATMI') & (MIDX not ('DEFMI','PROBMI'))</td>
</tr>
<tr>
<td>DDATE</td>
<td>Otherwise</td>
</tr>
</tbody>
</table>

Related Variable
MIDATE, MIDX, FATALDX, DDATE
ESFDATE

Purpose
To determine an earliest date to define event year in community surveillance.

Values
A date in mm/dd/yy format

Description
ESFDATE is the admission date or discharge/death date if admission date is not available.

Remarks
ESFDATE (for community surveillance) is an analogy to CESFDATE (for cohort surveillance).

Type
Event

Algorithm
For non-linked out-of-hospital deaths (OHD), ESFDATE takes non-missing values of the listing order DTH09, DTHDATE and DDATE. Otherwise, ESFDATE takes non-missing values of HRAA11A, DDATE0 and DDATE.

Related Variables
DTHDATE, DDATE, DDATE0
MIDATE

Purpose
To determine a MI date for Events in Community Surveillance.

Values
Date in mm/dd/yy format or . (missing)

Type
Event

Description
MIDATE is the hospitalization date (HSPDATE) from the occurrence that has the "worst" ARICDX2 classification within an Event. If two occurrences have even worst ARICDX2, choose the HSPDATE from the occurrence with more severe enzymes (greater ENZDX2). If ENZDX2 are again even, choose the earlier HSPDATE.

Algorithm

<table>
<thead>
<tr>
<th>Event Description</th>
<th>ALGORITHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>One occurrence</td>
<td>MIDATE=HSPDATE</td>
</tr>
<tr>
<td>Multiple linked occurrences:</td>
<td></td>
</tr>
<tr>
<td>All are hospitalizations</td>
<td>MIDATE=HSPDATE of the occurrence with the worst ARICDX2. If even ARICDX2, use the one with greater ENZDX2. If even ENZDX2, use the earlier HSPDATE</td>
</tr>
<tr>
<td>Multiple linked occurrences:</td>
<td></td>
</tr>
<tr>
<td>Out-of-hospital death linked to a non-fatal hospitalizations</td>
<td>MIDATE=HSPDATE of the hospitalized occurrence with the worst ARICDX2. If even ARICDX2, follow above algorithm.</td>
</tr>
</tbody>
</table>

Example
The following occurrences for EVENT_ID=1020193 have a MIDATE=09/30/87. This event is a multiple linked occurrences where all occurrences are hospitalized. Because of even ARICDX2 and even ENZDX2, the earlier HSPDATE with the worst ARICDX2 and ENZDX2 is applied.

<table>
<thead>
<tr>
<th>ID</th>
<th>EVTYPE01</th>
<th>HSPDATE</th>
<th>ARICDX2</th>
<th>ENZDX2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1059737</td>
<td>N</td>
<td>09/30/87</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1149237</td>
<td>N</td>
<td>10/05/87</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1059782</td>
<td>N</td>
<td>10/16/87</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1020193</td>
<td>I</td>
<td>10/28/87</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

The MIDATE is 09/30/87 for this case.

Related Variables
HSPDATE, ARICDX2, ENZDX
CESFDATE

Purpose
To determine an earliest event date to define event year in cohort surveillance.

Values
A date in mm/dd/yy format

Description
CESFDATE is the admission date or discharge/death date if admission date is not available.

Remarks
CESFDATE (for cohort surveillance) is an analogy to ESFDATE (for community surveillance).

Type
Event

Algorithm
For non-linked out-of-hospital deaths (OHD), CESFDATE takes non-missing values of the listing order DTH09, DDATE. Otherwise, CESFDATE takes non-missing values of HRAA11A and DDATE.

Related Variables
DDATE
CEVTDAT3

Purpose
To determine an event date for cohort participants.

Values
A date in mm/dd/yy or . (missing)

Type
Event

Description
For definite or probable MI, CEVTDAT3 is CMIDATE. For definite fatal CHD, CEVTDAT3 is the death date from DTH09. For others, CEVTDAT3 is the last date with known status in Surveillance (DDATE, date of discharge/death).

Remarks
CEVTDAT3 (for cohort surveillance) is an analogy to EVTDAT3 (for community surveillance).

Algorithm

<table>
<thead>
<tr>
<th>CEVTDAT3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMIDATE</td>
<td>If CMIDX='DEFMI' or 'PROBMI'</td>
</tr>
<tr>
<td>DTH09</td>
<td>If not above, and if CFATALDX='DEFFATCHD' or 'DEFFATMI'</td>
</tr>
<tr>
<td>DDATE</td>
<td>otherwise</td>
</tr>
</tbody>
</table>

Related Variables
CMIDATE, CMIDX, CFATALDX, DDATE
CMIDATE

Purpose
To determine a MI date for Events in Cohort Surveillance.

Values
Date in mm/dd/yy format or . (missing)

Type
Event

Description
CMIDATE is the hospitalization date (HSPDATE) from the occurrence that has the "worst" CARCDXX2 classification within an Event. If even CARCDXX2, choose the HSPDATE from the occurrence with more severe enzymes (greater CENZDX2). If CENZDX2 are again even, choose the earlier HSPDATE.

Remarks
CMIDATE (for cohort surveillance) is an analogy to MIDATE (for community surveillance).

Algorithm

<table>
<thead>
<tr>
<th>Description</th>
<th>ALGORITHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>One occurrence</td>
<td>CMIDATE=HSPDATE</td>
</tr>
<tr>
<td>Multiple linked occurrences:</td>
<td>CMIDATE=HSPDATE of the occurrence with the worst CARCDXX2. If equal CARCDXX2, use the one with greater CENZDX2. If equal CENZDX2, use the earlier HSPDATE</td>
</tr>
<tr>
<td>All are hospitalizations</td>
<td></td>
</tr>
<tr>
<td>Multiple linked occurrences:</td>
<td>CMIDATE=HSPDATE of the hospitalized occurrence with the worst CARCDXX2. If equal CARCDXX2, follow above algorithm.</td>
</tr>
<tr>
<td>Out-of-hospital death linked to a non-fatal hospitalizations</td>
<td></td>
</tr>
</tbody>
</table>

Related Variables
HSPDATE, CARCDXX2, CENZDX2
SUDTH1

Purpose
Identify fatal events as "Sudden Cardiac Death", defined by death within 1 hour from onset of acute symptoms.

Values
1, 0,.U

Description
SUDTH1 is determined by HRA25g or (DTH09, DTH11, HRA11a & HRA11b) for in-hospital deaths (IHD). It is determined by MMCC reviews (MDX15b/CDX15b) for out-of-hospital deaths (OHD).

Type
Event

Remarks
SUDTH1 is defined for a subset of fatal events with the following fatal classifications: definite fatal MI, definite fatal CHD and possible fatal CHD. A classification of SUDTH1 exists for both community and cohort events. Information from the most current batch is used to define SUDTH1 when there are multiple batches of reviews (due to data changes).

Algorithm
SUDTH1=1 if death time* from event is less than or equal to 1 hour
= .U if death time is not definable
= 0 otherwise
*definition of Death time:
IHD: death time is defined by HRA25g (time from onset of this event to death), or by the difference between death time (DTH09/11) and admission time (HRA11a/b) if HRA25g is unknown. If death time is missing and the length between death date and admission date is greater than one day, then death time is greater than 24 hours.

OHD: If there is only one reviewer, take the value of MDX15b/CDX15b.
If there are more than one reviewer, then
a. Take adjudication value if present and not unknown, else
b. Take the non-missing value if only one time diagnosis is available and not unknown, else
c. Take a random selection of 2 non-missing values if two time diagnosis are both available and both not unknown, else
d. Death time is unclassifiable if no death time diagnosis is available.

Related Variables
HRA25g (time from onset of this event to death), DTH09 (death date), DTH11 (death time), HRA11a (date of arrival), HRA11b (arrival time), MDX15b (time to death from onset of acute symptoms in community surveillance), CDX15b (time to death from onset of acute symptoms in cohort surveillance)
SUDTH24

Purpose
Identify fatal events as "Sudden Cardiac Death", defined by death within 24 hours from onset of acute symptoms.

Values
1,0,.U

Description
SUDTH24 is determined by HRA25g or DTH09, DTH11, HRA11a and HRA11b for in-hospital deaths (IHD). It is determined by MMCC reviews (MDX15b/CDX15b) for out-of-hospital deaths (OHD).

Type
Event

Remarks
SUDTH24 is similar to SUDTH1, except it's defined based on death within 24 hours.

Algorithm
SUDTH24=1 if death time\(^*\) from event is less than or equal to 24 hour

= .U if death time is not definable

= 0 otherwise

\(^*\) definition of Death time:
IHD: death time is defined by HRA25g (time from onset of this event to death), or by the difference between death time (DTH09/11) and admission time (HRA11a/b) if HRA25g is unknown. If death time is missing and the length between death date and admission date is greater than one day, then death time is greater than 24 hours.

OHD: If there is only one reviewer, take the value of MDX15b/CDX15b.
If there are more than one reviewer, then
a. Take adjudication value if present and not unknown, else
b. Take the non-missing value if only one time diagnosis is available and not unknown, else
c. Take a random selection of 2 non-missing values if two time diagnosis are both available and both not unknown, else
d. Death time is unclassifiable if no death time diagnosis is available.

Related Variables
HRA25g (time from onset of this event to death), DTH09 (death date), DTH11 (death time), HRA11a (date of arrival), HRA11b (arrival time), MDX15b (time to death from onset of acute symptoms in community surveillance), CDX15b (time to death from onset of acute symptoms in cohort surveillance).
PRVRNK1

Purpose
To determine if there is a MI/CHD history for community surveillance events.

Values
0, 1, .(missing)

Type
Event

Description
For hospitalized events, PRVRNK1 is determined by the first HRA19f or first HRA32. For out-of-hospital deaths, PRVRNK1 is determined by the listing order of all PHQ3f, COR15a, or all IFI14 & IFI15. Note an out-of-hospital deaths may have at most three IFI1 and two PHQ.

Remarks
This variable is for community surveillance events only. For cohort surveillance participants, variable PREVMI04 or PRVCHD05 in the Cohort derived file (DERIVE06) should be used to identify history of MI and/or CHD.

Algorithm
If first HRA19f or first HRA32 is yes, then PRVRNK1=1, else
if first HRA19f or first HRA32 is no, then PRVRNK1=0, else
if any of the PHQ3f is yes, then PRVRNK1=1, else
if any of the PHQ3f is no, then PRVRNK1=0, else
if COR15a is yes, then PRVRNK1=1, else
if COR15a is no, then PRVRNK1=0, else
if any of the (IFI14=yes and IFI15=yes), then PRVRNK1=1, else
if any of the (IFI14=yes and IFI15=no) or IFI14=no, then PRVRNK1=0, else
PRVRNK1=missing

Related variables
HRA19f, HRA32, PHQ3f, COF15a, IFI14, IFI15