ARIC Manuscript Proposal # 814

PC Reviewed: 08/23/01 Status: _A__ Priority: __2_
SC Reviewed: 09/06/01 Status: __A__ Priority: ___2_

1.a. Full title: Association of beta2-adrenergic receptor polymorphisms with asthma and obesity in the Atherosclerosis Risk in Communities Study

1.b. Abbreviated title: ADRB2, asthma and obesity

2. Writing group:
 Lead: Molly Bray
 Address: Human Genetics Center
 U.T. Houston Health Science Center
 P.O. Box 20186
 Houston, TX 77225
 Phone: 713-500-9891; Fax: 713-500-0900
 E-mail: molly.s.bray@uth.tmc.edu

 First: Jill Morris
 Other authors: Paula Yoon, Dave Mannino, Marta Gwinn, Muin Khoury, Eric Boerwinkle

3. Time line:
 Measurement of the ADRB2 polymorphisms will be completed in the ARIC cohort by August 2001. Analysis of the data on obesity, asthma and genotype will be completed by December 2001. A draft manuscript will be distributed for internal circulation by February 2002.

4. Rationale:

 Asthma and Obesity

 Asthma and obesity are complex phenotypes resulting from the combined effects of genes, environment, behavior and their interactions. The prevalence of both asthma and obesity in the US has increased dramatically in recent years. Researchers are beginning to question the possibility of a link between the two and have even hypothesized that asthma may be another comorbid risk associated with obesity. At least two studies have shown that increasing body mass index was associated with the risk of developing asthma in females (1, 2). And a recent study found that severe obesity was a significant risk factor for asthma, wheeze and medication use (3). Asthma and obesity may be linked at the molecular level and could result from a genetic susceptibility to both conditions. One gene where this hypothesis might be explored is the \(\beta_2 \)-adrenergic receptor gene that has been shown to be associated with both asthma and obesity.

 The \(\beta_2 \)-adrenergic receptor gene has a large number of polymorphic variants. Three variants within the coding region of the gene appear to be functionally relevant but only two are functionally relevant and common: Arg16→Gly16 and Gln27→Glu 27 (4). Cells expressing the Glu27 form of the receptor show attenuated downregulation following \(\beta_2 \)-agonist exposure. Cells expressing the Gly 16 form of the receptor show enhanced receptor downregulation.
Genotype prevalence

Estimates of genotype prevalence are limited. In a study by Ramsey et al. (5) genotypes were determined for three hundred and thirty-two subjects from 76 families in Perth, Australia. The majority of the population was Caucasian (97%). Allele frequencies in the human population have been reported as: Gly16 (60%); Arg16 (40%); Gln27 (53%); Glu27 (47%).

Gene-Disease association

β2-adrenergic receptor and asthma

The β2-adrenergic receptor plays an important role in airway responses. The β2-adrenergic receptors are present on bronchial smooth muscle cells in the lungs where they act to dilate the airways in response to stimulation by circulating catecholamines or exogenous β2-agonists. The beta-2-adrenergic receptor agonists are the most widely used agents in the treatment of asthma. Variants of β2-AR that alter airway behavior could predispose individuals to develop an asthmatic phenotype (5). Studies in this area have looked at whether β2-AR polymorphisms were associated with asthma or its intermediate phenotypes; and whether treatment responses or asthma severity were associated with β2-AR polymorphisms. Although the effects seen in most studies to date are small, there does appear to be a reasonable consistent association with IgE levels, bronchial hyperresponsiveness, and treatment response (see table below). An association between β2-AR polymorphisms and the development of asthma is less certain.

β2-adrenergic receptor and obesity

The adrenergic system plays a role in the regulation of energy balance. Human adipocytes contain adrenergic receptors that can stimulate or inhibit lipolysis. The beta-2 adrenergic receptor is a major lipolytic receptor in human fat cells and may play a pathogenic role in essential hypertension. Increased surface β2-adrenergic receptor density in lymphocytes has been reported in hypertensive subjects (6). In subjects with abdominal obesity, the β2-adrenergic receptors in abdominal subcutaneous fat cells display a 10-fold decrease in lipolytic noradrenaline sensitivity (7). Associations between β2-adrenergic receptors and obesity from the published literature are summarized in the table below.
<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Association</th>
<th>Study Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu 27</td>
<td>Decreased airway reactivity</td>
<td>8</td>
</tr>
<tr>
<td>Glu27</td>
<td>Reduce response to histamine</td>
<td>5</td>
</tr>
<tr>
<td>Glu27</td>
<td>Type II diabetes</td>
<td>9</td>
</tr>
<tr>
<td>Gln 27</td>
<td>Elevated serum IgE</td>
<td>10</td>
</tr>
<tr>
<td>Gln27</td>
<td>Childhood asthma</td>
<td>11</td>
</tr>
<tr>
<td>Gln 27</td>
<td>Asthma severity</td>
<td>12</td>
</tr>
<tr>
<td>Gln27Glu</td>
<td>Plasma cholesterol concentration</td>
<td>13</td>
</tr>
<tr>
<td>Gln27Glu</td>
<td>Obesity in women</td>
<td>14</td>
</tr>
<tr>
<td>Gln27Glu</td>
<td>Obesity</td>
<td>9</td>
</tr>
<tr>
<td>Gly 16</td>
<td>Asthma severity</td>
<td>15</td>
</tr>
<tr>
<td>Gly 16</td>
<td>Nocturnal phenotype</td>
<td>16</td>
</tr>
<tr>
<td>Gly 16</td>
<td>Incr bronchial hyperreactivity</td>
<td>17</td>
</tr>
<tr>
<td>Gly16</td>
<td>Incr bronchodilator desensit after chronic dosing with formoterol</td>
<td>18</td>
</tr>
<tr>
<td>Gly16</td>
<td>Incr agonist sensitivity</td>
<td>14</td>
</tr>
<tr>
<td>Gly16 homozy</td>
<td>Lower freq in obese women</td>
<td>9</td>
</tr>
<tr>
<td>Gly16/Gln27 haplotype</td>
<td>Asthma severity</td>
<td>12</td>
</tr>
<tr>
<td>Arg16</td>
<td>Incr wheeze with a cold</td>
<td>5</td>
</tr>
<tr>
<td>Arg16Gly</td>
<td>Obesity in men</td>
<td>13</td>
</tr>
<tr>
<td>Arg16Gly</td>
<td>Plasma cholesterol concentration</td>
<td>13</td>
</tr>
<tr>
<td>Arg16Gly</td>
<td>Incr waist-to-hip ratio and systolic blood pressure in men</td>
<td>19</td>
</tr>
<tr>
<td>Arg16 homozy</td>
<td>Deterior in pulmonary function assoc with reg albuterol use</td>
<td>20</td>
</tr>
<tr>
<td>Arg16 homozy</td>
<td>Adverse effects of treatment with salbutamol</td>
<td>21</td>
</tr>
</tbody>
</table>

References

5. Ramsey CE, Hayden CM, Tiller KJ, Burton PR, Goldblatt J, Lesouef PN. Polymorphisms in the \exists_2-adrenoreceptor gene are associated with decreased airway responsiveness. Clinical and Experimental Allergy 1999;29:1195-1203.

5. **Main Issues/Hypotheses to be addressed:**
 a. Influence of the ADRB2 Arg16→Gly16 and Gln27→Glu27 polymorphisms on asthma and lung function. Univariate and multivariate analysis will be done. Traditional risk factors (age, race/ethnicity, gender, and smoking) will be controlled.
 b. Influence of the ADRB2 Arg16→Gly16 and Gln27→Glu27 polymorphisms on obesity status. Univariate and multivariate analysis will be done. Traditional risk factors (age, race/ethnicity, gender, smoking, hypertension, diabetes, and total cholesterol) will be controlled.
 c. Tests of interaction between the ADRB2 polymorphisms and obesity in the occurrence of asthma in multivariate models that include traditional risk factors (age, race/ethnicity, gender and smoking).

6. **Data (variables, time window, source, inclusions/exclusions):**

 Asthma – ever had asthma, confirmed by a doctor, age at onset (Respiratory Symptoms Physical Activity Form) and pulmonary function measures
 Obesity status and body size measures - BMI, waist circumference, hip circumference, waist/hip ratio, percent body fat
 \(\beta \)-adrenergic receptor genotypes

7.a. **Will the data be used for non-CVD analysis in this manuscript?** __X__ Yes ___ No

7.b. **If Yes, is the author aware that the file ICTDER02 must be used to exclude persons with a value RES_OTH = “CVD Research” for non-DNA analysis, and for DNA analysis RES_DNA = “CVD Research” would be used?** __X__ Yes ___ No

 (This file ICTDER01 has been distributed to ARIC PIs, and contains the responses to consent updates related to stored sample use for research.)

8.a. **Will the DNA data be used in this manuscript?** __X__ Yes ___ No

8.b. **If yes, is the author aware that either DNA data distributed by the Coordinating Center must be used, or the file ICTDER01 must be used to exclude those with value RES_DNA = “No use/storage DNA”?** __X__ Yes ___ No

9. **The lead author of this manuscript proposal has reviewed the list of existing ARIC Study manuscript proposals and has found no overlap between this proposal and previously approved manuscript proposals either published or still in active status. ARIC Investigators have access to the publications lists under the Study Members Area of the web site at:**

 http://bios.unc.edu/units/cscc/ARIC/stdy/studymem.html __X__ Yes ___ No