1.a. Full Title: Relationship of periodontal disease to renal insufficiency: The ARIC Study

b. Abbreviated Title: Periodontitis and renal insufficiency

2. Writing Group

 Lead: John R. Elter
 Address: Center for Oral and Systemic Diseases
 UNC School of Dentistry
 Campus Box #7450
 Chapel Hill, NC 27599-7450
 Phone: (919) 843-9974 Fax: (919) 966-6761
 E-mail: john_elter@dentistry.unc.edu

 Members of Writing Group:
 Abhijit V. Kshirsagar Ronald J. Falk
 James Beck Steven Offenbacher
 Josef Coresh

3. Time Line

 Obtain data set: February 2001
 Begin statistical analysis: February 2001
 Complete statistical analysis: March 2001
 Complete manuscript: April 2001

4. Rationale

 Cross-sectional (1, 2), case-control (3-6), and longitudinal reports (7-11) have shown a strong association of periodontitis, a type of chronic infection, and atherosclerotic cardiovascular disease. The bacterial pathogens causing periodontitis are felt to incite an inflammatory response that damages the endothelium and promotes atherosclerosis (12).

 The role of chronic infections in the pathogenesis of chronic kidney disease has not been studied. Yet, cardiovascular disease and chronic kidney disease share many similarities. The two conditions often co-exist (13, 14,) and share many common risk factors (15-17). Furthermore, atherosclerosis of large and medium-sized arteries supplying the kidney has been postulated to contribute to chronic kidney disease (18-21).

 The prevalence and incidence of chronic kidney disease have been rising steadily for the last 15 years (17). As chronic infections are felt to promote atherosclerosis, they may have an important role in the pathogenesis of chronic kidney disease. We therefore propose to
study the association of periodontitis and renal insufficiency in the Dental ARIC cohort at visit 4.

5. Main Hypotheses/Study Questions

Our *a priori* hypothesis is that periodontal disease and renal function are inversely related. That is, a high level of periodontitis is associated with a low level of renal function, and that having periodontitis increases the risk of having renal dysfunction compared to not having periodontitis. Furthermore, we hypothesize that there is a graded response between the level of periodontitis and level of renal dysfunction.

6. Data

All variables necessary for the analysis are available in the Dental ARIC cohort of the ARIC Study. The variables include age, race, center, gender, weight, serum creatinine concentration, periodontal pocket depth and attachment level, hypertension status, diabetes status, smoking status, education level, total cholesterol, HDL cholesterol, LDL cholesterol, fibrinogen, white blood cell count.

Outcome variable. The main outcome variable is calculated glomerular filtration rate (cGFR), a newly devised and validated estimate of renal function (22).

\[
cGFR = 186 \times (\text{Serum creatinine})^{-1.154} \times (\text{age})^{0.203} \times 1.212(\text{if black}) \times 0.742(\text{if female})
\]

We will use calculated glomerular filtration rate as both a continuous variable, and as a categorical variable. All the demographic and medical variables needed for the calculation are available for the Dental ARIC cohort.

Main independent variable. The main independent variable is periodontal disease as defined by the interval variable "extent of periodontal attachment loss (AL) (corrected for PD 4+ mm at buccal sites) at least 3 millimeters". In addition, Periodontal case status will be defined as follows: No periodontitis = extent AL < 3%, mild periodontitis = extent AL 3% - < 30%, and severe periodontitis = extent AL 30%+. Quintiles of extent AL will be used to evaluate a dose-response between periodontal disease and impaired cGFR.

Covariables. The covariables will be a composite of race and ARIC field center, 3 levels of education (to control for SES), hypertension, smoking (current heavy, current light, former heavy, former light, or never), diabetes mellitus, fibrinogen, white blood cell count, and plasma LDL, HDL, and triglyceride levels.

Planned Analysis.

1. Logistic regression with relative odds of impaired renal function (yes/no) with no periodontitis, moderate periodontitis, or severe periodontitis as the independent variable.
2. Linear regression with calculated glomerular filtration rate as a continuous outcome variable and extent of periodontal attachment level as a continuous variable, and categorized into no periodontitis, moderate peridontitis, and severe periodontitis as described under "main independent variable" above.
3. Multivariable models will be adjusted for the \textit{a priori} suspected confounders: race and ARIC field center, education, hypertension, smoking, diabetes mellitus, fibrinogen, white blood cell count, and LDL, HDL, and triglyceride levels.

Time window. This study will be a cross-sectional study of the data obtained from ARIC cohort members at Visit 4.

Inclusions/exclusions. This study will include all Dental ARIC cohort members for whom periodontal measures and serum creatinine were available, and exclude persons reporting being on dialysis. Approximately 6800 persons had periodontal examinations at Visit 4.

7. a. Will data be used for non-CVD analysis in this manuscript? \textbf{X Yes}

b. If Yes, is the author aware that the file ICTDER02 must be used to exclude persons with a value RES_OTH= “CVD Research” for non-DNA analysis, and for DNA analysis, and for DNA analysis RES_DNA= “CVD Research” would be used? \textbf{X No}

8. a. Will DNA data be used in the manuscript? \textbf{X No}

References

