1. Full Title: Association of the interleukin-1 gene cluster with carotid intimal-medial wall thickness
 Abbreviated Title (Length 26): IL-1 gene cluster and IMT

2. Writing Group (list individual with lead responsibility first):
 Lead: James Pankow
 Address: Department of Epidemiology
 CVD Program
 137 E. Franklin Street
 NationsBank Plaza, Suite 306
 University of North Carolina at Chapel Hill
 Chapel Hill, NC 27514
 Phone: (919) 966-2148; FAX: (919) 966-9800
 Email: jim_pankow@unc.edu

 Members of Writing group:
 James Beck
 Molly Bray
 Steven Offenbacher
 Lloyd Chambless
 Diane Catellier

 ** Investigators from Medical Science Systems and the University of Sheffield will be added to the writing
 group if the study results are released into the public domain prior to submission of the full manuscript.

3. Timeline:
 Successful genotyping of the ultrasound case-cohort sample has been completed for four single-nucleotide
 variants in the IL-I gene cluster known to be related to the inflammatory response. Data analyses are expected to
 be completed within 2-3 months of starting, and the start is expected to be around Oct 1, 1998.

4. Rationale:
 Inflammation is a critical component of endothelial cell damage, atheroma formation and calcification, and
 vascular smooth muscle cell proliferation. IL-1 proteins have been implicated as critical mediators of this
 process. Recently, our collaborators have indicated that variation within the IL-1 gene cluster is associated with
 increased production of IL-1 alpha and beta proteins and decreased levels of IL-1 receptor antagonist. The net
 effect is a genetic conformation that confers a hyperinflammatory phenotype. Thus, we hypothesize that these
 IL-1 polymorphisms may be associated with subclinical atherosclerosis. This first manuscript on IMT will
 focus on the independent effects of the four loci as part of a larger effort to characterize the role of the IL-1 gene
 cluster in subclinical atherosclerosis. Subsequent papers will examine multiple-locus (i.e., haplotype) effects as
 well as more complex analyses with other potential mediating factors.

5. Main Hypothesis:
 Variation in the IL-1 gene cluster independently contributes to predictive models of carotid intimal-medial wall
 thickness in the presence of known risk factors.

6. Data (variables, time window, source, inclusions/exclusions):
IL-1 genetic variants were measured in the ultrasound cases, including supplementary African-American ultrasound cases and controls, as well as the cohort random sample. Visit 1 variables in the analyses will include, but are not limited to, the standard AHA risk factors: hypertension status, diabetes status, smoking status, blood lipids, age, and gender. IMT will be analyzed in cross-sectional mode as both a continuous and categorical variable, using methods to account for the stratified random sample nature of the data.