Manuscript #590

1. Title: RAS Polymorphisms and the Development of LEAD
 Short Title: RAS polymorphisms and LEAD

2. Writing Group:
 (lead) Duanping Liao, Richey Sharrett, Alanna Morrison, Greg Evans, Eric Boerwinkle,
 L.E. Chambless, Gerardo Heiss

3. Main Study Questions:
 Is the risk of incident LEAD, measured by ABI changed from > 0.9 to < 0.90 after an
 average of 7.5 years of follow-up, associated with ACE I/D and AGT1-R A-C
 polymorphisms?

4. Hypotheses:
 1) Individuals with the ACE DD or ID genotypes are more likely to develop incident
 LEAD compared to carriers of the n allele
 2) Individuals with the AGT1-R CC or AC genotypes are more likely to develop incident
 LEAD than carriers of the AA allele.
 3) In individuals who carry the AGT1-R A-C genotype (CC or AC), the presence of the
 ACE DD or ID genotypes is associated with an increased risk of
 developing LEAD, but not in carriers of the AA genotype of AGT1-R.

5. Analytic Approach:
 The cohort representative sample described in MS proposal land their genotype data will
 be used as the comparison group for this manuscript. The lower extremity arterial
 atherosclerosis will be measured as ankle and brachial systolic blood pressure ratio
 (ABI). Persons with baseline ABI S 0.90, indicative of prevalent LEAD, will be excluded
 from this comparison group during the analysis for this manuscript (not for others). The
 ABI value S 0.90 at either Visit 3 or Visit 4 will be used to identify persons who become
 an incident LEAD in this group.

 All baseline LEAD free (ABI > 0.90) cohort participants who had at least one ABI
 measure during either Visit 3 or Visit 4 will be the pool for the incident LEAD cases.
 From this cohort, participants who had follow-up ABI measure < 0.9 in either Visit 3 or
 Visit 4 will be identified as incident cases. In this process, we anticipate to identify 500
 cases of incident LEAD from the entire cohort. The genotypes (ACE DD, ID, and AGT1-
 R CC, AC, AA) for these individuals will be identified.

 A standard case-cohort analysis approach will be used to test the hypotheses listed above.
 Proportional hazards model will be used to estimate the association, and the effects will
be expressed as Hazards Ratio and 95% CI. The interaction of these two polymorphisms will be tested.

Other covariates to be controlled for include baseline ABI, age, ethnicity/center, sex, education levels, conventional CVD risk factors, diabetes, and hypertension.