Manuscript #462

1. Full Title: Carotid Artery size and stiffness vs. Incident Events
 Abbreviated Title (length 26): Events vs CA size/stiffness

2. Writing Group (list individual with lead responsibility first):
 Lead: Greg Evans
 Address: Department of Public Health Sciences
 Bowman Gray School of Medicine
 Winston Salem, NC 27157-1063
 Phone: (910) 716-6016 FAX: (910) 716-5425
 Email: gevans@rc.phs.bgsm.edu

 Riley WA Crouse JR Arnett
 Sorlie P Liao D Sharrett AR

3. Timeline:
 Preliminary analysis will begin immediately. Final analysis will await distribution of
 1994 incident events. A draft ms is expected by fall of 1997.

4. Rationale: ARIC has recently demonstrated that B-mode measurements of carotid
 intima-media thickness are predictive of incident events. We have previously shown that
 both arterial (lumen) diameter and common carotid arterial distensibility have complex,
 curvilinear relationships with IMT (ms #003b). Thus, any association of distensibility
 with CHD may be independent of IMT.

 The extent to which differences in arterial size or stiffness between participants may
 contribute to prediction of incident events, with or without adjustment for IMT or SBP, is
 not known. We propose to examine these relationships in the ARIC cohort.

 Since reduced distensibility is believed to indicate pathological changes in the artery
 measured, we hypothesize that reduced distensibility will be positively associated with
 CHD incidence. Lumen diastolic diameter, however, may be a protective factor for CHD
 after adjustment for BP and the measures of arterial pathology (IMT and reduced
 distensibility).

5. Main Hypothesis:
 1) After control for age, height, race, gender, SBP, DBP and IMT, both arterial (lumen)
 diameter and CCA arterial distensibility will significantly predict incident events. This
 relationship may or may not be apparent without controlling for IMT.
 2) Arterial diameter & CCA distensibility will continue to significantly predict events
when included in the same model (i.e., diameter is significant after control for
distensibility, and vice versa).
3) The above relationships persist after control for major CVD risk factors
(acknowledging that this may constitute over-adjustment). Furthermore, the relationships
described above will not demonstrate important interactions with CVD risk factors such
as smoking.

6. Data (variables, time window, source, inclusions/exclusions):
Ultrasound and risk factor data will be obtained from distributed data sets for ARIC
Visits 1 & 2 (visit 2 information is required since distensibility was collected on less than
half the cohort at baseline, but roughly 80% of the cohort has data in either V2 or V1).
Incident events will be defined based on events that occurred after the visit in which
distensibility data was collected (V1 or V2) and before 12/31/94.