Title: Relationship between postural change in blood pressure and three-year incidence of hypertension

Received: 06/08/94 Disposition: Approved Priority: 1
Reviewed by PC: 06/16/94

Background:

There is reasonable evidence that blood pressure readings following postural change and differences in blood pressure obtained in diverse body position can have value in predicting risk of cardiovascular morbidity and mortality, additional to that derived from sitting arm blood pressure measurements [Borst (1984), de Biase (1988), Jorde (1986), Sparrow (1984, 1986)]. Sparrow, et al. (1984), have shown that a simple measurement of postural change in DBP was predictive of MI in the Normative Aging Study cohort after 8 ½ years of follow-up. Sparrow et al. (1986) have also reported further analysis from the Normative Aging Study showing that supine systolic arm BP alone and supine-sitting systolic arm BP difference were both independently associated with improved prediction of subsequent development of hypertension (using the conventional sitting arm BP definition). Some of the hypothesized mechanisms include increased sympathetic nervous activity (e.g., “hyper-responders”), defects in the baroreceptor reflex, and/or larger than normal cardiac outputs.

Measurement of blood pressure variability in population samples, such as obtained by the ARIC study, can be expected to provide an important complement for studies performed by physiologists and clinical scientists, which have indicated that blood pressure elevation is a heterogenous phenomenon. Jorde and Williams (1986) as well as other researchers in this field have concluded that cardiovascular responsiveness appears to provide an accurate indicator of heterogeneity in circulatory physiology for blood pressure and probably also heart rate.

Goal:

The purpose of the proposed analysis is to examine:

a. the hypothesized (direct) association between blood pressure reactivity to a standard postural change and levels of blood pressure in individuals not treated with antihypertensive agents, examined during baseline survey of the ARIC cohort;
b. the hypothesized (direct) association between increased blood pressure response to a standard postural change and blood pressure elevation over the course of three years of follow-up in the ARIC cohort.

c. Assess the possible modifying effect of age, gender, race, and diabetes mellitus on the associations identified above.

Data Needed

Arm blood pressures obtained during the Visit 1 ultrasound examination (supine and standing) and the following group of variables for both Visit 1 and Visit 2: sitting blood pressures; ARIC derived variables to indicate hypertension, diabetes, (prevalent) cardiovascular disease; selected, vasoactive medications; socio-demographic characteristics; measures of ponderosity; smoking status; physical activity scores; field center sonographer and blood pressure technician IDs.

Proposed definition of incident hypertension:

Population at risk at Visit 1: diastolic BP < 85 and systolic < 135, not on antihypertensive medication, has never been told by a physician that she/he has high blood pressure.

Incident hypertension (at Visit 2): diastolic BP ≥ 90 or systolic ≥ 140 or on antihypertensive medication (self-reported during medication survey at field center visit or according to a standard list of codes identifying antihypertensive agents).

Proposed exclusions at baseline:

Individuals on anti-hypertensive agents (reported during medication survey interview and by screening of medication codes), prevalent coronary heart disease, missing data on postural change in blood pressure.

References

Pickering TG, Harshfield GA, Kleinert HD, Blank S, Laragh JH. Blood pressure during normal daily activities, sleep and exercise: Comparison of values in normal and
