ARIC Manuscript Proposal #2244

PC Reviewed: 10/8/13                      Status: A                      Priority: 2
SC Reviewed: __________                      Status: _____                      Priority: _____

1.a. Full Title: Smoking and progression of white matter hyperintensities: The ARIC-MRI Study

b. Abbreviated Title (Length 26 characters): Smoking and WMH

2. Writing Group:
   Writing group members: Jennifer Deal, Rebecca Gottesman (senior), Cliff Jack, David Knopman, Tom Mosley, Melinda Power (first), A. Richey Sharrett, others welcome

I, the first author, confirm that all the coauthors have given their approval for this manuscript proposal. MP [please confirm with your initials electronically or in writing]

First author: Melinda Power
Address: Phipps 475
         600 North Wolfe Street
         Baltimore, MD 21287
Phone: 617.721.9984       Fax: 410-955-0672
E-mail: melindacpower@gmail.com

ARIC author to be contacted if there are questions about the manuscript and the first author does not respond or cannot be located (this must be an ARIC investigator).
Name: Rebecca Gottesman
Address: Phipps 446D
         600 North Wolfe Street
         Baltimore, MD
Phone: 410-614-2381       Fax: 410-955-0672
E-mail: rgottesm@jhmi.edu

3. Timeline:
   Completion 2-3 months after approval.

4. Rationale:
   White matter hyperintensities (WMHs) are small lesions commonly detected as incidental findings on MRI. Current understanding suggests that they reflect subclinical small vessel disease, specifically damage to areas of white matter due
to hypoperfusion, thrombosis of arterioles, or a leaky blood-brain barrier. Greater WMH volume and WMH progression is associated with subsequent increased risk of stroke, dementia and mortality, and also appears to predict decline in some domains of cognitive function that are often impaired in vascular dementia.¹

Smoking appears to be associated with cognitive decline and dementia, including Alzheimer’s disease and vascular dementia.² Similarly, smoking is an established risk factor for stroke.³ Therefore, it is reasonable to hypothesize that smoking may influence cognitive decline, dementia, and stroke risk through promotion of small vessel disease.

While few studies have focused on the cross-sectional association between smoking and WMHs, studies of other risk factors for WMHs and studies surveying multiple potential risk factors often report on the smoking-WMH association. As has been noted by others, a handful of studies reporting unadjusted univariate correlations actually suggest an inverse association between smoking and WMHs.⁴ ⁵ However, the majority actually report null (e.g.⁶) or positive associations (e.g.⁷⁸). Notably, in a prior study in ARIC, smoking was positively associated with WMH severity, with stronger associations observed among African-Americans than among European-Americans.⁹ Similar findings are reported in studies that specify smoking as a risk factor of interest. In a series of 253 Japanese patients oversampled for stroke, duration of smoking and current or former smoking were significantly positively correlated with periventricular hyperintensity grade.¹⁰ Likewise, current smoking was associated with greater periventricular WMHs among those under 65, and with greater deep WMH among those over 65 in a series of 595 Korean patients who underwent brain MRI in the outpatient setting.¹¹

Relatively few studies have assessed risk factors, including smoking, for WMH progression. Associations with progression provide stronger evidence for a causal relation, as progression is a stronger predictor of cognitive decline than baseline WMH volume and studies within-person change are less susceptible to confounding. To date all three studies of risk factors for WMH progression suggest positive findings for smoking. In the Cardiovascular Health Study, whose primarily white participants are all over age 65, baseline current smoking predicted WMH progression.¹² Similarly, in the Rotterdam Scan Study, whose participants are primarily white and over 65, baseline current cigarette smoking predicted progression of small vessel disease, as indicated by WMH progression.¹³ Finally, a prior study in ARIC noted suggestive, but not significant, positive associations between ever versus never and current versus not former/never smokers and one or more grade increase in WMH score.¹⁴

There are several limitations to the existing work on the association between WMH and smoking. First, in many of the previous studies, and in all studies of WMH progression, smoking was not the primary risk factor of interest. Instead, most considered broad swaths of risk factors in a search for independent predictors of WMHs and choice of adjustment for covariates included both potential confounders and potential intermediates. In addition, most studies considered only smoking defined as current versus non-smokers; therefore questions relating to timing of smoking cessation, smoking intensity, and other characteristics of smoking behavior remain unresolved. Second, in most studies, and in both of the studies reporting on the association between smoking and progression, the participants were primarily white and over age 65. It is unclear whether race or timing of smoking influence the observed association; in the previous work in ARIC, which considered a younger, more racially diverse group than other similar studies, the association was suggestive, but weaker.

As such, we propose to describe the relationship between smoking and white matter hyperintensity progression in the ARIC Brain MRI study. Specifically, we will assess whether smoking status predicts white matter hyperintensities and whether this association differs by black versus white race. In addition, we will determine whether the association between smoking and WMH progression varies by intensity or duration of smoking or timing of smoking or smoking cessation.
5. **Main Hypothesis/Study Questions:**

We hypothesize that cigarette smoking will be strongly associated with WMH progression from visit 3 to the Brain MRI study, and that this relationship will be (1) stronger in black participants than in white participants, (2) stronger with greater pack-years or duration of smoking, and (3) will attenuate with increased time since quitting smoking among former smokers.

6. **Design and analysis (study design, inclusion/exclusion, outcome and other variables of interest with specific reference to the time of their collection, summary of data analysis, and any anticipated methodologic limitations or challenges if present).**

**Exclusions:**

No MRI at visit 3 or the Brain MRI study, missing smoking data.

**Independent variables:**

Smoking status (current/former/never) at visits 1,2,3,4 and Brain MRI. Pack-years and duration of smoking among ever smokers and time since smoking cessation for former smokers, both prior to visit 3 and through the Brain MRI study, derived from visit 1-4, annual follow-up questionnaires, and the Brain MRI questionnaire. We may also consider other aspects of smoking behavior in secondary analyses.

**Dependent variables:**

Change in WMH volume from visit 3 to the brain MRI study, computed as measured volume minus imputed volume, according to an established algorithm\(^{15}\), and change in WMH score using the Cardiovascular Health Study (CHS) scale\(^{16}\) from visit 3 to the brain MRI study.

**Effect modifiers:**

Gender, race, age, hypertension, diabetes.

**Statistical Analyses:**

For analyses using change in WMH volume, we propose to use linear regression to assess the association between our smoking variables and continuous change in WMHs and logistic regression to assess the association between smoking and the risk of being in the top quintile of progression.

For secondary analyses using change in CHS score, we propose to use ordinal logistic regression to assess the relationship between smoking and change in CHS score.

All analyses will be adjusted for age, education, race/center, and gender. We will also consider models that additionally adjust for potential intermediates, including body mass index, diabetes, hypertension, and prevalent coronary heart disease. We will use multiplicative interaction terms to assess effect modification.
7.a. Will the data be used for non-CVD analysis in this manuscript?  ____ Yes  _x_ No

b. If Yes, is the author aware that the file ICTDER03 must be used to exclude persons with a value RES_OTH = “CVD Research” for non-DNA analysis, and for DNA analysis RES_DNA = “CVD Research” would be used?  ____ Yes  ____ No

(This file ICTDER has been distributed to ARIC PIs, and contains the responses to consent updates related to stored sample use for research.)

8.a. Will the DNA data be used in this manuscript?  ____ Yes  _x_ No

8.b. If yes, is the author aware that either DNA data distributed by the Coordinating Center must be used, or the file ICTDER03 must be used to exclude those with value RES_DNA = “No use/storage DNA”?  ____ Yes  ____ No

9. The lead author of this manuscript proposal has reviewed the list of existing ARIC Study manuscript proposals and has found no overlap between this proposal and previously approved manuscript proposals either published or still in active status. ARIC Investigators have access to the publications lists under the Study Members Area of the web site at: http://www.cscce.unc.edu/ARIC/search.php

__X__ Yes  ____ No

10. What are the most related manuscript proposals in ARIC (authors are encouraged to contact lead authors of these proposals for comments on the new proposal or collaboration)?

#1894 Retinal microvascular abnormalities predict progression of white matter disease and incident lacunar infarcts: The ARIC MRI study

#1387 Temporal changes in blood pressure and cerebral white matter lesions in a biethnic sample: The ARIC MRI Study


11.a. Is this manuscript proposal associated with any ARIC ancillary studies or use any ancillary study data?  _x_ Yes  ____ No

11.b. If yes, is the proposal

_____ A. primarily the result of an ancillary study (list number ARIC Brain MRI: 1999.01)

_____ B. primarily based on ARIC data with ancillary data playing a minor role (usually control variables; list number(s)* ______________ ______________ ______________)

*ancillary studies are listed by number at http://www.cscce.unc.edu/aric/forms/
12a. Manuscript preparation is expected to be completed in one to three years. If a manuscript is not submitted for ARIC review at the end of the 3-years from the date of the approval, the manuscript proposal will expire.

12b. The NIH instituted a Public Access Policy in April, 2008 which ensures that the public has access to the published results of NIH funded research. It is your responsibility to upload manuscripts to PUBMED Central whenever the journal does not and be in compliance with this policy. Four files about the public access policy from http://publicaccess.nih.gov/ are posted in http://www.cscce.unc.edu/aric/index.php, under Publications, Policies & Forms. http://publicaccess.nih.gov/submit_process_journals.htm shows you which journals automatically upload articles to Pubmed central.

References

1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010-07-26 00:00:00 2010;341.