1. **Full Title:** Race and Venous Thromboembolism: The Longitudinal Investigation of Thromboembolism Etiology

2. **Abbreviated Title (Length 26 characters):** Race and VTE: The LITE Study

2. **Writing Group:**
 Writing group members:
 - Mary Cushman, MD, MSc
 mary.cushman@uvm.edu
 - Pamela Lutsey, PhD
 lutsey@umn.edu
 - Aaron Folsom, MD
 folso001@umn.edu

I, the first author, confirm that all the coauthors have given their approval for this manuscript proposal. NAZ [please confirm with your initials electronically or in writing]

First author: Neil A. Zakai, MD, MSc

Address: Department of Medicine
University of Vermont College of Medicine
208 South Park Drive, Suite 2
Colchester, VT 05446

Phone: (802) 656-3154 Fax: (802) 656-8965
E-mail: neil.zakai@uvm.edu

Corresponding/senior author (if different from first author correspondence will be sent to both the first author & the corresponding author):

Address: Mary Cushman
208 South Park Drive, Suite 2
Colchester, VT 05446
Phone: (802) 656 8959 Fax: (802) 656 8965
E-mail: mary.cushman@uvm.edu

3. **Timeline:** From approval of the manuscript proposal and release of the dataset, a manuscript will be drafted within 1 year.

4. **Rationale:**

Venous thromboembolism (VTE) is a common disease affecting between 350,000 and 600,000 Americans each year and potentially related to over 100,000 deaths each year1,2. VTE occurs due to complex interrelationships of both genetic and environmental risk.
factors, with the incidence increasing dramatically with age and a substantially higher incidence among African-Americans as compared to European-Americans\cite{2}. The US Surgeon General’s Call to Action in 2008 highlighted both the need for more research on the epidemiology of VTE and the need to address racial differences in incidence\cite{1}.

Multiple studies have observed that African-American have a 30% to 60% higher incidence of VTE compared to their European-American counterparts\cite{3-5}. The reasons for this are not well understood. The most common genetic variants associated with VTE in Caucasian populations (factor V Leiden and the prothrombin gene G20210A variant) are disorders of European origin and are rare in African-Americans\cite{5}, while the prevalence of abnormal biomarkers of VTE risk such as elevated D-dimer, elevated factor VIII, shorter aPTT and elevated C-reactive protein (CRP) are more prevalent in African-Americans\cite{6-10}. Further, VTE risk factors such as obesity and diabetes are also more common in African-Americans\cite{11}.

For this analysis, we will use data from the Longitudinal Investigation of Thromboembolism Etiology (LITE), an ancillary study capturing VTE events in both the Cardiovascular Health Study and the Atherosclerosis Risk in Communities Study. Table 1 presents the number of VTE in LITE to date subdivided by race and whether the event was idiopathic or secondary.

<table>
<thead>
<tr>
<th>Table 1: Documented VTE in LITE to Date.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cohort</td>
</tr>
<tr>
<td>African-American</td>
</tr>
<tr>
<td>European-American</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Total VTE</td>
</tr>
<tr>
<td>Site</td>
</tr>
<tr>
<td>DVT</td>
</tr>
<tr>
<td>PE</td>
</tr>
<tr>
<td>Race</td>
</tr>
<tr>
<td>European-American</td>
</tr>
<tr>
<td>African-American</td>
</tr>
<tr>
<td>VTE Type</td>
</tr>
<tr>
<td>Idiopathic</td>
</tr>
<tr>
<td>Secondary</td>
</tr>
</tbody>
</table>

We hypothesize that differences in known risk VTE factors and that a higher incidence of provoked (and potentially preventable) VTE explain part of the disparity in VTE risk between African-Americans and European-Americans. Specifically, the increased burden of VTE in African-Americans will be related to differences in (1) the incidence of provoked versus unprovoked VTE (2) the prevalence of medical conditions that are risk
factors for VTE, such as obesity, kidney disease and diabetes; (3) differences in biomarkers of risk such as coagulation factors (factors VIII, XI, D-dimer, vWF, and protein C) and elevated CRP.

5. Main Hypothesis/Study Questions:
 a. African-Americans will have a higher incidence of VTE and of potentially preventable VTE (provoked by surgery and hospitalizations) than European-Americans.
 b. A higher prevalence of obesity and diabetes, and a procoagulant state as assessed by coagulation factor levels in African-Americans will mediate part of the increased risk of VTE observed in African-Americans.
 c. Diabetes, kidney disease, and obesity will be more strongly associated with VTE in African-Americans than in European-Americans while coagulation biomarkers will have an equal association.

6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of interest with specific reference to the time of their collection, summary of data analysis, and any anticipated methodologic limitations or challenges if present).

Data [Variables to be used, sample inclusions/exclusions]:

Participants who are not African-American or European-American will be excluded. Some analytes are measured only in ARIC or CHS and analyses including these analytes will be from these cohorts only. Some analytes are measured only in the LITE case-control study and analyses including these will be only in the nested case-control group. Analyses including genetic information will exclude individuals not consenting to use of genetic information.

Outcome Variable: VTE (provoked and idiopathic)

Covariates:
Baseline: Age, gender, race, body mass index, diabetes, hypertension, kidney disease (estimated GRF), income, education.
Coagulation Factors: aPTT, D-dimer, factors VIII, IX, XI, fibrinogen, protein C, vWF
Genetic Markers: prothrombin G20210A, factor V Leiden, ABO blood group
Inflammation Markers: CRP

Brief analysis plan and methods:

a. African-Americans will have a higher incidence of VTE and of potentially preventable VTE (provoked by surgery and hospitalizations) than European-Americans.

We will compare the age and gender normalized incidence of VTE per patient year in the entire cohort as well as for African-Americans and European-Americans separately for all VTE, idiopathic VTE, provoked VTE, pulmonary embolism (with or without deep venous thrombosis) and deep venous thrombosis alone using a z-test.
b. A higher prevalence of obesity and diabetes, and a procoagulant state as assessed by coagulation factor levels in African-Americans will mediate part of the increased risk of VTE observed in African-Americans.

We will compare the prevalence of VTE risk factors between African-Americans and European-Americans using t-tests or Wilcoxon Rank Sum tests for continuous risk factors as appropriate and analyses for dichotomous risk factors. We will do this in the entire cohort for variables available in the entire cohort or in the control group for variables available in the case-control group only. We will then use Cox proportional hazard models for data available in the entire cohort and logistic regression models for data available only as case-control data. In age-, sex-, and race-adjusted models we will evaluate the impact that individually adding risk factors for VTE (i.e. obesity, diabetes, factor VIII etc.) has on the race coefficient. In addition to individual risk factors, we will enter groups of risk factors such as coagulation factors etc. We will assess the impact of the addition of variables on the race-coefficient but will not do a traditional mediation analysis (see power section).

c. Diabetes, kidney disease, and obesity will be more strongly associated with VTE in African-Americans than in European-Americans while coagulation biomarkers will have an equal association.

In age-, sex-, and race-adjusted models (either Cox proportional hazard models or logistic regression as appropriate) we will assess for a significant interaction term between the race term and the risk factor (race*risk factor). We will also look at additive interactions between race and categorical variables by calculating the relative excess risk percent. Where appropriate we will add additional covariates (such as body mass index when assessing coagulation factors). We will present stratified models for all interaction terms ≤ 0.1.

Power Considerations

There is already a known and detectable difference in the incidence of VTE in African-Americans and European-Americans in LITE\(^{11}\). For sub-group analyses without significant results we will report the potentially detectable difference based on the person-years of follow-up and the observed rates. In some analyses we may lack power to detect clinically meaningful differences while in others clinically meaningful differences may be ruled out.

For Aim B, we will look at the change in the race coefficient within a clinical context and not perform a traditional mediation analysis, for which we potentially lack power to detect moderate effect sizes.

For Aim C Table 2 presents the potentially detectable OR in stratified analyses (250 cases represents an estimation for the number of African-American VTE and 500 cases represents an estimation for the number of European-Americans with VTE). We
assumed a power of 80% and an alpha of 0.05 and a case to control ratio of 1:2. This is our most restricted analysis; other analyses will have more power.

Table 2: Detectable Odds Ratios for Logistic Regression Models in LITE (Power = 80%, < 0.05, case:control = 1:2)

<table>
<thead>
<tr>
<th>Number of Cases</th>
<th>Risk Factor Prevalence</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
<td>2.35</td>
<td>1.93</td>
<td>1.68</td>
<td>1.59</td>
<td>1.57</td>
<td>1.57</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>1.88</td>
<td>1.61</td>
<td>1.45</td>
<td>1.39</td>
<td>1.37</td>
<td>1.37</td>
</tr>
</tbody>
</table>

Summary

By accomplishing our aims we will characterize racial differences in VTE in LITE, evaluate the impact of VTE risk factors in African-Americans and European-Americans, and begin to understand what risk factors may mediate the difference.

7.a. Will the data be used for non-CVD analysis in this manuscript? ___ Yes X No

b. If Yes, is the author aware that the file ICTDER02 must be used to exclude persons with a value RES_OTH = “CVD Research” for non-DNA analysis, and for DNA analysis RES_DNA = “CVD Research” would be used? ___ Yes ___ No

(This file ICTDER02 has been distributed to ARIC PIs, and contains the responses to consent updates related to stored sample use for research.)

8.a. Will the DNA data be used in this manuscript? X Yes ____ No

8.b. If yes, is the author aware that either DNA data distributed by the Coordinating Center must be used, or the file ICTDER02 must be used to exclude those with value RES_DNA = “No use/storage DNA”? X Yes ____ No

9. The lead author of this manuscript proposal has reviewed the list of existing ARIC Study manuscript proposals and has found no overlap between this proposal and previously approved manuscript proposals either published or still in active status. ARIC Investigators have access to the publications lists under the Study Members Area of the web site at: http://www.cscc.unc.edu/ARIC/search.php

X Yes ____ No

10. What are the most related manuscript proposals in ARIC (authors are encouraged to contact lead authors of these proposals for comments on the new proposal or collaboration)?

11. a. Is this manuscript proposal associated with any ARIC ancillary studies or use any ancillary study data? X Yes ____ No
11.b. If yes, is the proposal
 X A. primarily the result of an ancillary study (list number* LITE 1998.03)
 ___ B. primarily based on ARIC data with ancillary data playing a minor role (usually control variables; list number(s)* __________ __________ __________)

*ancillary studies are listed by number at http://www.cscc.unc.edu/aric/forms/

12. Manuscript preparation is expected to be completed in one to three years. If a manuscript is not submitted for ARIC review at the end of the 3-years from the date of the approval, the manuscript proposal will expire.

References: