ARIC Manuscript Proposal #1378

1.a. Full Title: Ventricular premature contractions and risk of incident stroke and sudden cardiac death.

b. Abbreviated Title (Length 26 characters): VPCs, Stroke and SCD


I, the first author, confirm that all the coauthors have given their approval for this manuscript proposal. SKA

First author: Sunil Kumar Agarwal
Address: Department of Epidemiology
School of Public Health, UNC-CH
E-mail: sunilagarwal@unc.edu
Phone: (919) 265-4727 Fax: (919) 966-9800

Corresponding/senior author: Ross J. Simpson
Address: Division of Cardiology,
CB#7075, UNC, Chapel Hill, NC, 27599-7075
Phone: (919) 966-5201 Fax: (919) 966-1743
E-mail: rsimpson@med.unc.edu

3. Timeline:
VPCs have been coded using 2 minutes ECG at ARIC baseline. Manuscript writing will be completed within 15 months of its approval and data release.

4. Rationale:
Ventricular Premature Contractions (VPCs) are common, yet, mostly asymptomatic irregular rhythms seen in electrocardiograms (EKGs).

VPCs have a reported prevalence of 6.2%, using 2 minutes rhythm strip at baseline (mean cohort age = 55 years), in the ARIC cohort [1]. With the exception of patients who have established coronary heart disease, in whom VPCs are considered a marker of disease severity, clinical studies have reported their benign prognosis [2-4]. In contrast to the above, population based studies - including a study from the ARIC cohort [5] - have consistently shown positive association between VPCs and coronary heart disease (CHD) events [6-8]. Furthermore, studies using intracardiac EKGs (stored) in patients with an implantable cardioverter defibrillator have consistently shown VPCs as predictors of arrhythmic events [9, 10].
However, in patients with CHD, adverse cardiac events increased following VPCs suppression using class I antiarrhythmic medications (CAST I and II trials). This raised a question about the modifiability of VPCs as a risk factor. Nonetheless, they could play an important role in risk stratification and thus guide aggressive management of other modifiable risk factors associated with them and with CVD events. In this study, our first aim is to explore the association between VPCs and incident stroke.

VPCs are associated with traditional risk factors for atherosclerosis. Thus, in individuals with VPCs, atherosclerosis likely remains a dominant factor for increased cardiac end-points and cardiac specific mortality. If this is so, we expect to see increased stroke too in individuals with VPCs. Another possible mechanism relating to atherothrombotic end points is VPCs mediated arrhythmia.

To our knowledge, only one study published by Engstrom G et. al. has looked at the association between stroke and VPCs (Lown criteria >2). It found an increased rate of stroke with VPCs but these results did not achieve statistical significance [11]. Despite the study’s strength of utilizing a 24 hour Holter record to monitor premature contractions, this study had a small sample size and included only males of mostly Caucasian origin [11]. The large sample size of the ARIC cohort, inclusion of African American examinees, and the sizeable number of incident stroke events (525/13875) [12, 13] allows us to explore this relationship further with greater power.

Left ventricular hypertrophy (LVH) measured using echocardiography has been shown to be a predictor of stroke [14]. Similar conclusions were drawn from studies employing LVH measured by ECG [15]. Interestingly, a study of the long term prognosis of VPCs in individuals with ventricular hypertrophy also found an increased rate of all cause mortality (not reaching statistical significance) but not cardiovascular specific mortality [16]. The above findings suggest that VPCs may be a marker of a pathology other than increased blood pressure or hypertensive cardiomyopathy. Whether there are more stroke events in those with VPCs and LVH (or hypertension) as compared to only LVH (or hypertension) remains to be explored, although statistical power to detect such interaction(s) would be relatively limited.

A recent article reported the interaction of VPCs and increased heart rate in predicting all-cause and CVD specific mortality [17]. Increased sympathetic activity has been implicated for the above association [18, 19]. We wish to explore similar interaction of VPCs and increase heart rate with incident stroke as outcome in the ARIC cohort.

To summarize, VPCs are common, yet asymptomatic beats seen in EKG. These have been shown to be associated with coronary heart disease and traditional risk factors. This study will explore the association of VPCs and incident stroke. Also, it will consider the interaction effect due to LVH and increase heart rate. Further, two mechanism outlined above for stroke i.e atherosclerosis and arrhythmogenic potential may also be contributory to sudden cardiac death (SCD). Though, overall CHD mortality has been studied [5], but SCD remains unstudied in ARIC cohort as a outcome following VPCs. Studies done in 90’s have reported high risk ratio of SCD as compared to non-SCD in those with VPCs at baseline [6]. We wish to extend the analysis by including SCD as one of the outcomes.
5. Main Hypothesis/Study Questions:
   I. Ventricular premature contractions are associated with risk of incident stroke
      a. These associations are seen across gender and race.
      b. The association of VPCs with risk of stroke and CVD mortality is modified
         by left ventricular mass / hypertrophy and heart rate.

   II. Ventricular premature contractions are associated with risk of incident sudden
       cardiac death.

6. Design and analysis (study design, inclusion/exclusion, outcome and other
   variables of interest with specific reference to the time of their collection, summary of
   data analysis, and any anticipated methodological limitations or challenges if present).

   **Study design:** Longitudinal data analysis using Cox regression will be employed. Individuals
   with a positive or unknown history of stroke at the ARIC cohort baseline will be excluded from
   the analysis. Also, subjects with race other than African American or Caucasians (n=48) will
   be excluded. Additionally, patients with cardiac abnormal rhythm such as atrial
   fibrillation/flutter, WPW syndrome will be excluded.

   Cox regression models will be fit to find if there is any difference in the association between
   VPC and stroke (stroke related mortality) in the strata of race, gender, prevalent CHD
   disease, prevalent ventricular hypertrophy, and heart rate. Measures of associations will be
   reported separately for two or more stratum (if effect is found heterogeneous in the stratum
   or more of the above covariate) after adjusting for important confounders. Proportionality
   hazard assumption and linearity assumption (dose-response) will be examined.

   Further, Cox regression models will be used to examine the association between VPCs and
   SCD in the stratum of modifiers after adjusting for important confounders. Proportional
   hazard assumption and linearity assumption on VPC staging with be assessed and
   appropriate measures taken, if assumptions fails.

   **Variables:**
   **ARIC visit 1:**
   **Main exposure:** VPCs (Lown’s classification).

   **Covariates:** Demographics (Age, Race, Gender, Education); Prevalent diseases (stroke,
   CHD, Diabetes mellitus, ); Hypertension, Cholesterol levels (HDL and LDL), ECG
   abnormality ( Atrial Fibrillation/ flutter, Wolf Parkinson White, Wandering atrial pacemaker,
   supra-ventricular tachycardia ); Pharmacotherapy (Angiotensin converting enzyme inhibitors,
   calcium channel blockers, beta blockers, diuretic, other anti-hypertensive drugs, digoxin);
   Serum potassium; Serum Magnesium; Heart rate and Ventricular hypertrophy (Cornell
   voltage)

   **ARIC follow up visit (through 2001 or later)**
   Stroke (with type); Stroke related death; Sudden Cardiac Death.

SKA ARIC ms. Proposal: VPC, stroke and sudden cardiac death;2008-06-02
7.a. Will the data be used for non-CVD analysis in this manuscript? **No**

b. **NA**

8.a. Will the DNA data be used in this manuscript? **No**

8.b. **NA**

9. The lead author of this manuscript proposal has reviewed the list of existing ARIC Study manuscript proposals and has found no overlap between this proposal and previously approved manuscript proposals either published or still in active status.

   No overlaps found.

10. What are the most related manuscript proposals in ARIC (authors are encouraged to contact lead authors of these proposals for comments on the new proposal or collaboration)?

   **ARIC proposal #839: Authors of this manuscript are collaborating in writing of this manuscript.**

11. a. Is this manuscript proposal associated with any ARIC ancillary studies or use any ancillary study data? **No**

b. **NA**

12. Manuscript preparation is expected to be completed in one to three years. If a manuscript is not submitted for ARIC review at the end of the 3-years from the date of the approval, the manuscript proposal will expire.

   **Agreed**
References:


