1.a. **Full Title:** Variants of the *TCF72L* gene and the risk of sudden cardiac death

b. **Abbreviated Title (Length 26 characters):** TCF72L and sudden death

2. **Writing Group:**
 Writing group members: Anna Kucharska-Newton, Kari E. North, Suzette J Bielinski, Wayne D. Rosamond, Anna Kottgen, Gerardo Heiss, Eric Boerwinkle, ; others welcome

I, the first author, confirm that all the coauthors have given their approval for this manuscript proposal. AMK-N **[please confirm with your initials electronically or in writing]**

First author: Anna Kucharska-Newton
Address: Department of Epidemiology, CVD Program
 Bank of America Center
 137 E. Franklin St.
 Chapel Hill, NC 27514-3628
 CB# 8050

 Phone: (919) 966 4564 Fax: (919) 966 9800
 E-mail: Anna_Newton@unc.edu

Corresponding/senior author (if different from first author correspondence will be sent to both the first author & the corresponding author):

Address: same as above

3. **Timeline:** Analysis to begin immediately following approval of the proposal. A draft of the manuscript should be ready within nine months of study approval.

4. **Rationale:**

 Sudden cardiac death constitutes up to 50% of all cardiac deaths\(^1\), yet, despite this large burden of disease, to date no specific risk factors have been identified\(^2\). Strategies aimed at decreasing risk of sudden cardiac death are therefore also not specific and it is difficult to identify populations at risk.

 Results of many studies suggest that Type 2 diabetes is associated more strongly with sudden cardiac death than with other cardiovascular outcomes.\(^3\,^4\) Type 2 diabetes is a complex disease in which insulin
insufficiency, or insulin resistance is a clinical manifestation of multiple metabolic pathways involving both genetic and environmental factors. A large body of diabetes research to date has focused on the role of cardiovascular disease risk factors and obesity in the development of the disease. Recent discoveries of the association of multiple genetic mutations with diabetes however, underscore the need to examine the etiology of diabetes at both the environmental and genetic level. Genetic variants found to be associated with diabetes are located on chromosome 10q in a region coding for transcription factor 4, a member of the canonical Wnt signaling pathway involved in cell proliferation. Variants of this gene, TCF7L2, have been estimated to contribute up to 21% of the population attributable risk of diabetes in a number of different population groups. This large contribution to the overall risk of diabetes and the fact that the results have been replicated in different populations establish the role of this gene as a susceptibility variant for type 2 DM.

In this study we would like to examine the possible association of the rs7903146 TCF7L2 gene variant with incident sudden cardiac death. To our knowledge, despite the strong association of diagnosed diabetes with sudden death, there are no studies of the association of diabetes-related genes with sudden death. The effects of the TCF7L2 gene variants on the risk of diabetes are relatively modest, suggesting that their presence does not constitute sufficient cause for the development of the disease. Those effects however, are strongly modified by cardiovascular disease risk factors, especially obesity and hypertension (Kari North, unpublished data from the ARIC study). Obesity is an important risk factor for the development of diabetes; it is therefore possible that manifest diabetes and also obesity can modify the association of the TCF7L2 gene variants with sudden death. In this study we propose to examine the association of the TCF7L2 rs7903146 gene variant with sudden cardiac death in the presence and absence of diabetes and, by extension, presence and absence of elevated blood glucose levels. We will further examine the above associations as a function of obesity.

Main Hypothesis/Study Questions:

1. The rs7903146 SNP of the TCF7L2 gene is associated with risk of sudden cardiac death.
2. This association is modified, in race-specific analyses, by presence of diabetes or impaired fasting glucose.

6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of interest with specific reference to the time of their collection, summary of data analysis, and any anticipated methodologic limitations or challenges if present).

Study objectives:

The main objective of this study is to quantify the association of the rs7903146 TCF7L2 gene variant with incident sudden cardiac death in African Americans and whites, and the possible effect modifying roles of gender, obesity and type 2 diabetes.

Methods of analysis:

1. **Study population:** All ARIC cohort members with non-missing data on the TCF7L2 rs7903146 SNP.
2. **Outcome:** incident sudden cardiac death, defined as proposed by the Reynolds Project (MS#1086r) to be “death adjudicated by a physician panel to be a sudden, pulseless condition without known non-cardiac cause, or death certificate codes indicating death due to underlying heart disease that occurs outside the hospital or in the emergency department.”

3. **Variables to be included in analysis:**
 - **Independent variables:** The rs7903146 SNP located within the TCF7L2 gene will be examined. This SNP has been found to be the best candidate in the region for a functional effect and is most predictive across populations\(^1\), including in the ARIC study (Kari North, unpublished data from the ARIC study).
 - **Baseline variables:** we will evaluate the following variables for inclusion into multivariate models:
 - Demographic variables: age, gender, race/ARIC center. The burden of diabetes is higher among women than among men\(^3\), and it is higher among African Americans than Caucasians\(^4\). Furthermore, the prevalence of the TCF7L2 genotype differs by race. We will therefore examine gender and race as covariates for inclusion into regression models of the association of the TCF7L2 gene variants with incidence of sudden death as well as their potential role as effect modifiers of this association.
 - Covariates: The following variables: smoking status, hypertension, HDL-cholesterol, LDL-cholesterol, triglycerides, use of anti-hypertensive medication will be evaluated for inclusion into the regression analysis.
 - **Effect of BMI:** Since obesity is a strong factor predisposing towards development of diabetes and BMI has been shown to be a strong effect modifier in studies of the association of the TCF7L2 gene with diabetes\(^11,12\), we will evaluate the role of measures of obesity (body mass index, in the association of the TCF7L2 gene variants and sudden cardiac death.
 - Presence of diabetes or impaired fasting glucose: we will evaluate the effect of existing diabetes or pre-diabetes on the found associations by stratifying our analysis by the presence of those conditions at baseline and during follow-up.

4. **Data Quality Analyses:** Tests of Hardy-Weinberg equilibrium will be performed for each SNP in the cohort using the control samples. Significant deviations from Hardy-Weinberg will be assessed using a chi-square test, by comparing the observed distribution of genotypes to the Hardy-Weinberg ‘expected’ distribution, with degrees of freedom equal to the number of alleles (n) – 1.
Analysis Strategy: We will use the additive model of interaction to analyze the gene-disease association. For dominant or recessive genetic transmission models, a single indicator variable will be used. A variable taking on the values -1 for genotype XX, 0 for genotype X0, and 1 for genotype 00 will be used to test for additive genetic effects.

Analytical method: We will estimate the association of the TCF7L2 gene variants and incidence of sudden cardiac death in crude analysis and controlling for the selected variables. The time scale used in modeling will be age-at-risk. Estimation based on age-at-baseline will be conducted as a parsimonious sensitivity analysis. The hypothesized modifying effect of diabetes/IFG will be evaluated as an interaction term with the main exposure. Additional, plausible effect modification by gender and obesity will be performed as exploratory analysis.

7.a. Will the data be used for non-CVD analysis in this manuscript? ___ Yes ___ No

b. If Yes, is the author aware that the file ICTDER02 must be used to exclude persons with a value RES_OTH = “CVD Research” for non-DNA analysis, and for DNA analysis RES_DNA = “CVD Research” would be used? ___ Yes ___ No
(This file ICTDER02 has been distributed to ARIC PIs, and contains the responses to consent updates related to stored sample use for research.)

8.a. Will the DNA data be used in this manuscript? ___ Yes ___ No

b. If yes, is the author aware that either DNA data distributed by the Coordinating Center must be used, or the file ICTDER02 must be used to exclude those with value RES_DNA = “No use/storage DNA”? ___ Yes ___ No

9. The lead author of this manuscript proposal has reviewed the list of existing ARIC Study manuscript proposals and has found no overlap between this proposal and previously approved manuscript proposals either published or still in active status. ARIC Investigators have access to the publications lists under the Study Members Area of the web site at: http://www.csc.c.unc.edu/ARIC/search.php

___ Yes ___ No

10. What are the most related manuscript proposals in ARIC (authors are encouraged to contact lead authors of these proposals for comments on the new proposal or collaboration)?

MS# 1235 Bielinski S J et al., “Transcription factor 7-like 2 (TCF7L2) and incident cardiovascular disease. The Atherosclerosis Risk in Communities (ARIC) study”
The outcomes of interest in this proposal are incident cardiovascular disease, whereas the outcome of interest in our proposal is cardiovascular mortality, specifically sudden cardiac death.

11. a. Is this manuscript proposal associated with any ARIC ancillary studies or use any ancillary study data? ___ Yes ___ No

b. If yes, is the proposal ___ A. primarily the result of an ancillary study (list number_2004.03)
B. primarily based on ARIC data with ancillary data playing a minor role
(usually control variables; list number(s)* __________ __________ __________
*ancillary studies are listed by number at http://www.cscc.unc.edu/aric/forms/

12. Manuscript preparation is expected to be completed in one to three years. If a manuscript is not submitted for ARIC review at the end of the 3-years from the date of the approval, the manuscript proposal will expire.