ARIC Manuscript Proposal # 1265r

1.a. Full Title:
 Common Allele on Chromosome 9p21 and Risk of Heart Failure, Stroke, and Atherosclerosis in The Atherosclerosis Risk in Communities (ARIC) Study

b. Abbreviated Title (Length 26 characters):
 Allele on 9p21 & HF, stroke

2. Writing Group:
 Writing group members: Kazumasa Yamagishi, Aaron R. Folsom, Wayne D. Rosmond, Eric Boerwinkle, Jonathan C. Cohen and others

I, the first author, confirm that all the coauthors have given their approval for this manuscript proposal. _KY_ [please confirm with your initials electronically or in writing]

First author: Kazumasa Yamagishi
Address: Division of Epidemiology and Community Health, School of Public Health, University of Minnesota
 1300 South Second Street, Suite 300
 Minneapolis, MN 55454
 Phone: 612-626-1893 Fax: 612-624-0315
 E-mail: k-yamagishi@umin.net

Dr. Yamagishi is a visiting scholar working with Dr. Folsom.

Corresponding/senior author (if different from first author correspondence will be sent to both the first author & the corresponding author): Aaron R. Folsom
Address: Division of Epidemiology and Community Health, School of Public Health, University of Minnesota
 1300 South Second Street, Suite 300
 Minneapolis, MN 55454
 Phone: 612-626-8862 Fax: 612-624-0315
 E-mail: folsom@epi.umn.edu

3. Timeline: 4 months
 Approval of proposal
 Literature review - 2 weeks
 Outline paper - 1 week
 Data analysis - 3 weeks
 Manuscript writing - 4 weeks
4. **Rationale:**
Recently, two reports (1-2) independently identified a relatively strong association of myocardial infarction and coronary calcium with a common allele represented by rs2383206, or rs10757274 or other nearby SNPs near the *CDKN2A/B* gene on chromosome 9p21. The mechanisms are largely unknown. These SNPs are near a SNP (rs10811661) associated with diabetes in 3 reports (3-5). We hypothesize these SNPs are also associated with heart failure, stroke and other atherosclerotic diseases, but to date, no prospective study has tested this hypothesis.

The rs2383206 and rs10757274 polymorphisms have been already typed for the entire ARIC cohort. We propose to examine the association between these and incident heart failure, stroke and its subtypes, and prevalence of carotid atherosclerosis and PAD in the ARIC cohort sample.

Reference

5. **Main Hypothesis/Study Questions:**
rs2383206 and rs10757274 are associated with the risk of heart failure and stroke, especially ischemic stroke, but not hemorrhagic stroke. They are also associated with prevalent carotid atherosclerosis and PAD at baseline.

Although this seems like many outcomes for one paper, the coauthors feel this approach is appropriate for this paper.

6. **Design and analysis (study design, inclusion/exclusion, outcome and other variables of interest with specific reference to the time of their collection, summary of data analysis, and any anticipated methodologic limitations or challenges if present).**

Sample: ARIC entire cohort samples
Exclusions:

(for HF) missing gene variables, prevalent HF
(for stroke) missing gene variables, prevalent stroke
(for IMT) missing gene variables and IMT
(for PAD) missing gene variables, and ABI or claudication

Dependent variable: incident HF, stroke and its subtypes, and prevalent carotid atherosclerosis, PAD, and IMT. Values at baseline will be used for IMT.

Independent variable: chromosome 9p21 SNPs (rs2383206 and rs10757274)

Covariates: age, smoking, alcohol intake, BMI, blood pressure, antihypertensive medication use, diabetes, plasma total cholesterol, and other factors. Prevalent/incident CHD will be additionally included into the model to test potential confounding of the association by CHD. Analyses will also be performed stratifying by presence of prevalent/incident CHD.

Analysis plan: Hardy-Weinberg equilibrium will be tested by chi-square test. Sex-specific hazard ratios and 95% confidence intervals of incident heart failure, stroke and its subtypes across the genotypes will be calculated adjusted for age and other covariates using Cox proportional hazard models. A similar analysis will be done using logistic regression for prevalent carotid atherosclerosis and PAD, and linear regression for IMT as a continuous variable.

7.a. Will the data be used for non-CVD analysis in this manuscript? ___ Yes ___ No

b. If Yes, is the author aware that the file ICTDER02 must be used to exclude persons with a value RES_OTH = “CVD Research” for non-DNA analysis, and for DNA analysis RES_DNA = “CVD Research” would be used? ___ Yes ___ No
(This file ICTDER02 has been distributed to ARIC PIs, and contains the responses to consent updates related to stored sample use for research.)

8.a. Will the DNA data be used in this manuscript? ___ X___ Yes ___ No

8.b. If yes, is the author aware that either DNA data distributed by the Coordinating Center must be used, or the file ICTDER02 must be used to exclude those with value RES_DNA = “No use/storage DNA”? ___ X__ Yes ___ No

9. The lead author of this manuscript proposal has reviewed the list of existing ARIC Study manuscript proposals and has found no overlap between this proposal and previously approved manuscript proposals either published or still in active status.
ARIC Investigators have access to the publications lists under the Study Members Area of the web site at: http://www.cscc.unc.edu/ARIC/search.php

___X___ Yes _______ No

10. What are the most related manuscript proposals in ARIC (authors are encouraged to contact lead authors of these proposals for comments on the new proposal or collaboration)?

#1223 Large-scale genomic association study identifies region of human chromosome 9 influencing risk of CHD

11. a. Is this manuscript proposal associated with any ARIC ancillary studies or use any ancillary study data? ____ Yes ___X__ No

11.b. If yes, is the proposal

___ A. primarily the result of an ancillary study (list number* __________)

___ B. primarily based on ARIC data with ancillary data playing a minor role (usually control variables; list number(s)* __________ __________ __________)

*ancillary studies are listed by number at http://www.cscc.unc.edu/aric/forms/

12. Manuscript preparation is expected to be completed in one to three years. If a manuscript is not submitted for ARIC review at the end of the 3-years from the date of the approval, the manuscript proposal will expire.